3 Steps That Can Lead to Your Dream Job

kayla-brar

Author: Kayla Brar - Corporate Recruiter

Do you find the thought of job-hunting to be daunting? Perhaps a bit unsure of where to begin? Whether you are looking for a change in roles or searching to begin your career out of post-secondary school, below are three steps to consider in landing your dream job.

1. Interview Yourself

Set realistic objectives that are important to you. What are you specifically looking for in an employer? Is it the opportunity to grow within the organization, the chance to travel, working on challenging projects, being a part of a dynamic culture, or possibly all of the above? Once you have this established, focus on searching for companies that offer what you are looking for.

2. Research Organizations You Wish to Work For

If your approach to landing an interview is to send the same generic resume to each employer, you could be using your time more efficiently. Conduct research on the top organizations you wish to work for and determine if they offer what you have listed in step one as important elements in your future job. Your ideal position may not be your first, but if you know which company you want to work with, you are one step closer to landing your ideal role.

By targeting organizations you aim to work for, you can spend more time focusing on the individual job applications and customize them specifically for the intended roles. This will improve your chances of hearing back from the organizations and obtaining an interview. Today’s job market is extremely competitive, take a look at these tips to writing a resume to help you with this process.

If you are unsure about which company is ideal for you, visit a career fair. Scope out the employers attending ahead of time and visit the career section of their website to get some insight about what it is like working at the organization. During the career fair, speak with representatives about their experiences within the company (you will often learn more information that cannot be found online).

Tip: Follow companies on their social media sites (LinkedIn, Twitter, blogs, etc.). This will give you a good indication of what their organization is like and they may share potential job opportunities.

3. Interview the Company

When you have the opportunity to interview with a potential employer, be prepared with a few questions.  An interview is not only for the candidate to be asked questions, it is also an opportunity for the candidate to question the hiring team if this is the right job for them. Be sure to ask appropriate questions, such as questions about career development opportunities or the company culture. Do not discuss compensation at the first meeting; this can wait until further into the recruitment process.

Asking the right questions will not only determine your potential success within the organization, but it sends a positive impression to the company regarding your genuine interest in the position.

Organizations are very selective in finding the right person to join their team and you should be too. Completing the steps above may assist you in landing a job you find both successful and fulfilling.

Suggested reads: Resume Writing - Tips From a Recruiter

Enjoy Reading This? Why Not Share It With Other's

Facebook
Twitter
LinkedIn
Google+

Kayla Brar has a degree in Human Resource Management from York University. Kayla works as a Corporate Recruiter whose primary responsibilities include recruiting and onboarding top talent. Kayla is a coffee lover who can't often be found without a delicious cup in hand.

Connect with me on:

Related Posts

Careers

Do’s and Don’ts to Ace a Phone Interview

If you’ve made it to a phone interview, pat yourself on the back. Your resume has indicated that you possess some or even all of the necessary requirements in the position. Your resume has done its job to land you to the next stage in the recruitment

Read More »

Leave a Reply

Forgot Password / Request Access

Dealkalizer Technologies

Some important design considerations for the chloride cycle dealkalizer are:

  • Feed water must be softened
    • Calcium chloride can precipitate and foul the beads
  • Minimal impact on total dissolved solids
  • Potential small decrease in blowdown requirements
  • Relatively low capital cost, reasonably effective, simple to operate

 

Some important design considerations for the WAC dealkalizer are: 

  • Additional softening required. WAC can remove as much hardness as there is available alkalinity - any residual hardness needs to be removed before the boiler.
  • Efficiency reduction with increasing flow rate, decreasing kinetics.
  • Handling of acid
    • Sulfuric acid – heat of hydration is a concern (can’t have plastic tanks, plastic piping), higher concentrations are available (up to 93%), calcium sulfate precipitation can be a concern for water sources high in sulfate levels)
    • Hydrochloric acid – fumes, plastic can be used, calcium chloride precipitation is not a concern, lower concentrations available (up to 32%)
  • Higher capital cost, very effective, easy to operate, larger footprint

Ion Exchange Explained



A quick review of ion exchange is required to understand dealkalization and we’ll use the water softening process as an example, as most boiler operators are very familiar with this.  Water softeners use strong acid cation (SAC) resin for ion exchange.  SAC resin has an affinity for divalent ions (Calcium, Magnesium) meaning that the resin wants to grab a hold of these divalent ions as they’re passing through the bed and exchange them with the sodium ions. Once resin is saturated and there are no more available free resin beads for ion exchange, a brute force wash of the SAC bead with sodium chloride (salt) brine is required.

Legionnaires’ Disease Guide for Employers and Building Owners Download

Aqua Analytics DK-12000 Download

Checklist for Minimizing Legionella Risk Download

Purchaser Checklist for Setting Base Case Scenario Download

How to Minimize Amine Requirements



Amines should be dosed at the minimum rate required to neutralize carbonic acid, and to maintain pH levels of 8.0 to 9.0 in condensate.

In situations where incoming alkalinity levels are elevated, the concentration of amine required to neutralize the resulting elevated CO2 levels may exceed OTLs or even PELs. A number of alternatives are available to decrease alkalinity levels from incoming water:
  • Reverse osmosis (RO) Weak-acid dealkalization (WAC)
  • Chloride-cycle dealkalization
  • Demineralization (Demin)
RO, WAC and Demin units remove alkalinity from incoming water sources, and are often implemented to reduce energy and/or water consumption in steam plants because they decrease the overall mineral concentration of dissolved solids from incoming water. However, the chloride-cycle dealkalizer is a standout choice if the goal is to simply reduce incoming alkalinity on a budget. It operates much like a softener unit, and can decrease alkalinity levels by up to 95%.
Did we pique your interest on chloride-cycle dealkalizers? Click here to learn more...


Chloride-Cycle Dealkalizer Operation

Chloride cycle dealkalizers use strong base anion (SBA) ion exchange resin to swap carbonate and bicarbonate ions for chloride ions.  The footprint is similar a sodium softener, and they also use salt as the primary regenerant.  A small amount of sodium hydroxide if also often used to increase the effective capacity per regeneration.



The reduction of alkalinity in the feedwater, reduces the formation of carbonic acid in condensate, thus reducing the required amount of amines to neutralize the carbonic acid to maintain pH levels of 8.0 to 9.0 in condensate.

Implementation of a chloride-cycle dealkalizer can reduce your amine requirement by up to 90%.

PELs & OTLs



There are 2 important concentration guidelines:
  • Permissible Exposure Limits (PELs)
  • Odor Threshold Limits (OTL)
The following table describes the limits set by Occupational Safety & Health Administration (OSHA) and American Conference of Governmental Industrial Hygienists (ACGIH):


Exceeding PELs poses a health risk to occupants. These PELs should never be exceeded for any period of time. See this link for a related article from the Centers for Disease Control and Prevention (CDC).

http://www.cdc.gov/mmwr/preview/mmwrhtml/00001848.htm

It is best practice to also follow OTLs to minimize the likelihood of complaints from occupants, especially from those with sensitivities.

A More Detailed Look at the Components of Steam



Oxygen

Liquid water always contains some concentration of oxygen (O2). The solubility of oxygen is primarily determined by the temperature of the water. Higher temperatures reduce the solubility of oxygen in water (see graph).
Because oxygen is extremely corrosive in high temperature water, steam boiler treatment programs use chemical and/or mechanical means of eliminating dissolved oxygen in water. An effectively treated steam boiler, and the steam it produces, will have near-zero dissolved oxygen concentrations.

Carbon Dioxide

Carbon dioxide (CO2) is released by the heating of carbonate (CO32-) and bicarbonate (HCO3-) in boiler water. These ions are naturally present in water from lakes, rivers and underground wells, and their concentration determines the alkalinity of the water source. The amount of carbonate alkalinity entering the boiler is proportional to the volume of carbon dioxide gas that will be in the generated steam. Carbon dioxide eventually forms carbonic acid in condensate. Higher alkalinity values result in greater carbonic acid concentrations.
Are you a chemistry nerd? Click here to see the chemistry behind the release of carbon dioxide...


The Release of Carbon Dioxide



The above reactions describe the release of carbon dioxide gas from sodium bicarbonate (1) and sodium carbonate (2).

The heat energy in boiler water is sufficient for the first reaction to proceed to 100% completion.  The completion of the second reaction is dependent on increasing pressure and temperature.

Higher carbonate and bicarbonate levels in boiler feedwater will lead to proportionally higher concentrations of CO2 in steam.

Amines

The amine compounds used in boiler water treatment are selected based on their boiling point, and their distribution ratio. The distribution ratio is a measure of how far the amine will travel before condensing. An optimal blend of amines will protect the entire condensate piping network (near and far). Amines are considered volatile organic compounds, and their concentration must be monitored to prevent exposure to levels beyond permissible limits.
Click here if you want to impress your water treatment professional with your knowledge of amines...


Lesson about Amines to Impress Your Water Treatment Professional



Amines are a functional group in organic chemistry, and are derivatives of ammonia. They are separated into three main groups, primary, secondary and tertiary amines. These groups are defined by the number of hydrogen atoms replaced by organic substituents.

The most commonly used amines for neutralizing carbonic acid in condensate are:
  • cyclohexylamine (CHA)
  • diethylaminoethanol (DEAE)
  • morpholine
These amines are selected for their availability, basicity (ability to neutralize acids), boiling points, and most importantly, distribution ratios.

Distribution ratios (DR) are a measure of the how far amines will travel with steam before condensing. A proper blend of amines will include low DRs to protect condensate piping closest to the boiler, and high DRs to protect piping in longer and more complex condensate networks. Below is a table with the properties of the amines discussed above.

Other Types of Humidification Systems

Pan Humidifiers:

Pan humidifiers are essentially small shallow basins filled with water. The basins are heated with electric elements or steam, with the intent of evaporating water.

Pan humidifiers are found in smaller HVAC systems, and are susceptible to biological and corrosion fouling.

Water Spray Humidifiers:

This design uses an array of nozzles to atomize liquid water directly into the air stream. The phase change from liquid to vapour causes a noticeable drop in air temperature.

This type of system is most susceptible to biological and corrosion fouling. Facilities with year-long continuous cooling loads requiring high RH are best suited for this technology.

Steam to Steam or Clean Steam Generators:

These systems are small steam boilers, specifically designed to produce steam from high purity water sources, such as demineralization, or reverse osmosis. The energy input comes from steam raised elsewhere in the facility by a traditional steam boiler.

This design is typically more costly, and adds complexity, but produces steam with no boiler water treatment compounds.
Interested in this option? Click here to learn more about clean steam generators specifically.


Clean steam generators can only produce steam at low pressures.  The packaged heat exchangers rely on the higher energy content of higher pressure steam.

Water purity is critical for clean steam generators.
  • Low hardness levels (>3ppm of calcium, magnesium, or iron) will lead to fouling of heat exchange surfaces.
  • Water with even moderate alkalinity levels will release CO2 gas which will corrode any condensate piping components.
  • Moderate levels of total dissolved solids (TDS) will lead to priming or carry over, which may damage the steam control valves and/or contaminate the steam.
Therefore, Reverse Osmosis (RO) systems are ideal for humidifier makeup.  These units are designed to remove nearly all of the minerals from incoming water sources, and produce water with TDS concentrations of 0-5 ppm.

Steam to steam generators do cycle up.  Despite high purity makeup, there are always some dissolved solids.  If the generators do not purge some volume of water regularly, the bulk water will concentrate beyond acceptable levels, causing water discolouration and may lead to fouling and/or corrosion to system components depending on materials of construction.

Effects of Humidification on Occupant Comfort and Building Materials

RH levels have a direct impact on the health of patrons in a facility.

When humidity is too low occupants will get dry skin, irritated sinus, throats and eyes.

When humidity is too high mold/mildew problems can occur in the building, thus increasing the risk of illness to occupants. These health impacts are of increased concern with health care facilities who treat immunocompromised patients.

RH levels also have an impact on building materials.

The amount of moisture the material can hold will determine the extent to which it shrinks and swells with fluctuations in humidity. The effect is especially pronounced in wood and drywall, where gaps and cracks will form over time.

Windows are also prone to condensation in cold climates because they generally have little insulation value. The likelihood of condensation on windows increases as the indoor relative humidity rises, and the outdoor temperature decreases.

Engineering Notes – Deaerator Download

Tower & Chiller Lay-Up Procedure Download

Edu Blog Newsletter Subscription

Contact Me

Service Locations

Quebec Sales Office

Ontario Sales Office

Canadian Head Office

Close